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The equilibrium and stability of a single row of equidistantly spaced identical point 
vortices is a classical problem in vortex dynamics, which has been addressed by several 
investigators in different ways for at least a century. Aspects of the history and the 
essence of these treatments are traced, stating some in more accessible form, and 
pointing out interesting and apparently new connections between them. For example, 
it is shown that the stability problem for vortices in an infinite row and the stability 
problem for vortices arranged in a regular polygon are solved by the same eigenvalue 
problem for a certain symmetric matrix. This result also provides a more systematic 
enumeration of the basic instability modes. The less familiar theory of equilibria of a 
finite number of vortices situated on a line is also recalled. 

1. Introduction 
In $ 156 of his classic text Hydrodynamics Lamb (1932) discusses the arrangement 

and stability of a single row of identical point vortices, elaborating on investigations 
on single and double rows by von KPrmPn (191 1, 1912; see also von KPrmPn & 
Rubach 1912).t Today we view the physical relevance of this model in at least two 
ways. On one hand, we may think of the row of vortices as a discretized version of a 
vortex sheet, such as Rosenhead (1931) used in his pioneering numerical ‘vortex 
method’ study of vortex sheet roll-up. Then in the continuum limit we should recover 
from the stability problem for the vortex row the well-known dispersion relation for 
the inviscid Kelvin-Helmholtz instability. On the other hand, stimulated by the 
experimental discoveries of coherent structures in a shear layer (cf. Roshko 1976), we 
can view the single row of vortices as a simplified model of a system of more complex 
vortices, each represented by a single degree of freedom. In this interpretation the 
instability modes correspond to observable modes of evolution of the shear layer, and 
we would expect a ‘pairing mode’ (Brown & Roshko 1974; Winant & Browand 1974) 
to predominate. 

The problem of a row of vortices has been approached in various ways over the 
years. Von KPrman discussed the physical problem of an infinite row on the 
unbounded plane, as reviewed by Lamb (1932). The problem of certain conditionally 
convergent sums was circumvented by invoking physical arguments. I briefly 
recapitulate these arguments in $2 since I need them for later developments. (This 
approach is also reviewed in 87.5 of the recent monograph by Saffman 1992.) A more 
elegant way of arriving at the results is perhaps to consider the problem of point 
vortices in a periodic strip, and I show how this is done in $3. The necessary algebraic 

t These papers are most easily found in von Karmin (1956). 
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steps to carry out this analysis were discovered quite independently of the 
Karman-Lamb analysis (and without a problem of vortex dynamics in mind) by 
Calogero & Perelomov (1979, 1978). These results are included in Sec. 15.823 of the 
enlarged edition of the well-known table by Gradshteyn & Ryzhik (1980). I state the 
formal results as a theorem of linear algebra in $4. 

A different approach to the problem of a row of vortices is to consider a regular 
polygon of N identical vortices, another equilibrium configuration, and for fixed side 
length to let the number of vortices increase so that the circle on which they are located 
gradually expands to infinity and locally looks more and more like a segment of an 
infinite row. This strategy was used by Havelock (1931) in an important paper, 
although he was primarily interested in the more complicated problem of the double 
row, the counterpart of the well-known Karman ‘vortex street’. The vortex polygons 
were studied independently by Lord Kelvin (Thomson 1878), motivated by experiments 
of Mayer (1878a, b) on configurations of floating magnets, and by J. J. Thomson 
(1883) in his Adams Prize Essay. Various minor inaccuracies in Thornson’s (1883) 
analysis were corrected by Morton (1935) independently of Havelock’s (1931) more 
comprehensive treatment. In $5 I demonstrate that there is a connection between the 
stability problem for the polygon configurations and the eigenvalue problem stated in 
$4. In particular, I re-derive Thomson’s theorem that a vortex N-gon is stable for N < 6 
but unstable for N >, 8. Most of the results given in $ 5 are well known and are reviewed 
in § 7.1 of Saffman’s (1992) monograph. However, the connection between the stability 
problem for the infinite (or periodic) linear arrangement and that for vortex polygons 
and the key role of the eigenvalue problem of $ 4  appear to be new.t 

A third and considerably less familiar approach to the problem of a linear array of 
vortices is to consider equilibrium configurations with a finite number of identical 
vortices situated on a line. These were discovered by Stieltjes in 1885 (see Szego 1939, 
$6.7) in the physical context of seeking equilibria of electrostatically interacting line 
charges, and re-discovered and analysed in considerable detail by Calogero and co- 
workers in the mid-1970s (cf. Ahmed et al. 1979). In particular, it was shown that the 
linearized stability problem for such a finite line of vortices can be solved analytically. 
Taking the limit N +  cc again leads to the results for the infinite, single row, but some 
interesting variations are now possible. For example, one finds an equilibrium of 
identical point vortices with an ‘inhomogeneity ’, a vortex of different strength, 
embedded. This material is the subject of $56 and 7. It is based on the papers cited and 
on some unpublished notes derived from correspondence with F. Calogero in 1979. 

A first version of this paper was originally prepared and presented on the occasion 
of the 75th birthday symposium for Professor N. Rott held at Stanford University in 
September 1992. 

To conclude this Introduction I state the basic equations of motion under study: 

dz* 1 .& . 
dt 2xi B-l za-zB 

a -  

Herein the za are the complex positions of the point vortices, z, = x,+iy,, where 
(xu, yk) are the Cartesian coordinates of vortex a = 1, . . . , N. The 4 are the circulations 
or strengths of the vortices. They are constant in time, and for most of the present 
discussion will be chosen to be identical. Here and in what follows an asterisk denotes 
complex conjugation, and the prime on the summation sign indicates omission of the 
singular term /? = a. 

Although I have used this approach in lectures on the subject for a number of years. 
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2. The von KarmBn-Lamb argument 
We start from the intuitively clear observation that an infinite row of uniformly 

spaced, identical point vortices is an equilibrium configuration. The velocity produced 
at the location of any of the vortices consists of an infinite sequence of equal magnitude 
but oppositely directed velocities from pairs of vortices at equal distances to the left 
and right of the vortex in question. Each such pair of contributions cancels. 

Formally, we have a time-independent, equilibrium configuration given by 

(2.1) z(o) = m, a = O , f l , & 2  ,..., 

where a is any chosen spacing. According to (1.1) the stationarity of the configuration 
amounts to the statement that 

and this depends on a summability rule for the conditionally convergent sum. The 
requirement (2.2) is, of course, the only reasonable one from a physical point of view. 

Proceeding to a stability analysis we set 

substitute in (1.1) and linearize in the perturbations Q. Recalling (2.2) this gives 

We now notice that if we substitute for 5, a plane wave solution, exp {ikaa} - where 
the wavenumber k may be chosen to satisfy lkla < n - we obtain on the right-hand side 
of (2.4) 

The sum is clearly independent of a and equals 

The imaginary part vanishes by antisymmetry, and the last equality follows from 
knowledge of the Fourier series expansion of the function x(1 -x) on 0 < x < 1 (cf. 
Gradshteyn & Ryzhik 1980, equation 1.443.3). 

For future use we define 
fTk =-(l-%). rlkl 

2u 

If we expand a general solution t ( t )  as a Fourier integral over all relevant 
wavenumbers k. 

(2.9) 
(2.10) 

It follows that every wavelike perturbation, except the pure displacement mode 
k = 0 (or k = k 2x/a), can lead to exponential growth at a rate crk .  The most unstable 
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modes occur for k = & n/a.  Since these modes have a wavelength h = 2x/lkl = 2a, they 
can be captured even at finite amplitude by considering the dynamics of a periodically 
continued system with just two vortices in the ‘basic cell’, a theme that we shall 
elaborate on in $4. The wavelength 2a is the shortest wave that can be accommodated 
by the periodic steady state under consideration. 

Hence, von Karman (1912) concluded that the single, infinite row of uniformly 
spaced, identical vortices is unconditionally unstable, i.e. unstable to a wavelike 
perturbation of any wavenumber that the state can support. The growth rate, gA, of a 
perturbation wave of wavelength h is given by (2.7): 

(2.11) 

The argument was given as a preparation for the more complicated analysis of vortex 
streets. A slightly more elaborate version may be found in von Karman & Rubach 
(1912), in Lamb (1932, $156) and in Saffman (1992, $7.5). 

In the continuum limit, h % a, we may replace I‘/a by the velocity jump AU across 
the vortex sheet, and the term in parentheses in (2.1 1) by 1. The resulting formula for 
the growth rate, 

(2.12) 

then reproduces the classical formula for the inviscid Kelvin-Helmholtz instability (cf. 
Landau & Lifshitz 1987, (29.8), who refer to this flow as a ‘tangential discontinuity’). 

3. Vortices in a periodic strip 
I want now to embark on something that may at first sight appear unrelated, but that 

will quickly be linked with the developments in the preceding section. This is the notion 
of a periodically continued system of point vortices. 

If in (1.1) we assume that a collection of N point vortices is repeated periodically 
along the x-axis, we must augment the mutual interactions given in that equation to 
include the effect of the ‘periodic images’ of each vortex. Thus, assume that in addition 
to the N vortices with positions z,, a = 1, . . . , N ,  we have for each an infinite row of 
uniformly spaced periodic images located at 

Z(m) II = z,+mL, m = 0, k l ,  k2 ,..., 

where L is the length of the period. The ‘basic’ vortices at z,, a = 1,. . . , N,  can always 
be thought of as those representatives of the infinite periodic family that at any instant 
are in the ‘basic strip’, 0 < x < L, but, of course, any representative from each periodic 
family will do. 

(3.1) 

Substitution in (1.1) now gives 

* I N  I 
C’r, : dzx - 

dt 2ni 8=1 m=-m z,-(z,+mL) 

The contributions from the periodic images of vortex a itself cancel in pairs just as in 
the argument for the equilibrium configuration in $2. The sum over m in (3.2) may be 
rewritten as 
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Using the partial fraction expansion of cot we recognize this as (R/L) cot {(n/L)(z,-z,$}. 
Thus, we have the counterpart of (1.1) for a periodically continued system with N 
vortices in the ‘ basic strip’ : 

Let us immediately substitute in this equation the result from $ 2  that (2.1) is a 
solution. Indeed, if we set a = L / N ,  we can capture this state in the periodic system 
with N vortices in a strip of width L. This gives us the identity 

Since this holds for every vortex, the sum is independent of a, as one can also easily 
verify directly, and we have the simpler form of the result: 

N-1 

a trigonometric identity valid for all N. 
Let me make a few remarks in closing this section. The first is that (3.4) could also 

be found by using the Routh-Lin Green’s function theory for point-vortex motion in 
bounded domains (see Lin 1943). The second is that the dynamical system (3.4) is again 
Hamiltonian, and retains both components of linear impulse as integrals. This seems 
first to have been noticed by Birkhoff & Fisher (1959). The invariant Hamiltonian is 

The system (3.4) is, thus, integrable for N = 1,2 and arbitrary vortex strengths. For 
N = 3 it is integrable if the three vortices have zero net circulation, but probably not 
otherwise (Aref 1985). Situations where such motions are relevant, I suggest, include 
some of the three-vortex-per-cell wakes observed experimentally by Williamson & 
Roshko (1988), in particular the regime they call ‘P+S’  in their paper. This theme is 
currently being pursued independently and will be reported elsewhere. Integration of 
the problem of three interacting vortices with vanishing net circulation on the infinite 
plane was considered a few years ago by Rott (1989) and Aref (1989). The 
corresponding problem in the periodic strip appears to be considerably more involved. 

4. An eigenvalue problem 
We may now give a slightly different flavour to the developments in $2 by noting that 

any wave with a wavelength h such that a / h  is rational, say a / h  = p / q ,  where p ,  q are 
natural numbers with 2p < q (since h 2 2a), must repeat after every q vortices. Hence, 
we must be able to capture such a wave by considering the system of q vortices 
periodically continued. In other words, if we perform the linearized stability analysis 
on such a periodic system, we should find unstable wavenumbers that are precisely the 
same as those uncovered in 52. 

Let us write out this observation explicitly. We have now a steady state 

z z ) = a a ,  a = l ,  ..., q, (4.1) 
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in place of (2.1). The superscript (0) may be read also as m = 0 in the context of (3. l), 
and then L = qa. The dynamics in question is that of (3.4). Hence, when we perturb 
similarly to (2.3), 

where again a = 1,. . . , q, we obtain in place of (2.4) 

z,W = z p  + 5,(0, (4.2) 

- - i n r g /  5, - cfl 
dt 2L2 B-l sinz{(n/q)(a-p)}’ 

with the strip width L = qa. 
Note that the coefficient of Q on the right-hand side is independent of a: 

a 1 a 1 

(4.3) 

According to the arguments given connecting the periodic system to the infinite 
system considered in $2, the perturbation ca = exp{i2npa/q} reproduces itself 
multiplied by the factor 

which is just ink from (2.7) with k rewritten as (2n/a)(p/q). 
positive and negative values here.) 

This result is equivalent to the statement that the q x q 

(4.5) 

(We have let p assume both 

real symmetric matrix, 

which appears on the right-hand side of (4.3), has the eigenvalues 

a:’ = 2P(q -PI, P = 0, 1, * * . , [q/21, (4.7) 

and that associated with each of these there are two eigenvectors, &’) = cos (27tpalq) 
and $?) = sin (2npa/q), a = 1, . . . , q. (When q is even, we have only $hp) for p = q/2. 
For both even and odd q we have only +hp) for p = 0.) These statements clearly solve 
the eigenvalue problem for the matrix A, in (4.6) completely. They were stated in this 
form by Calogero & Perelomov (1978, 1979). 

We can now turn the entire argument around. Let us consider from the outset the 
periodically continued system with q vortices in a basic strip of width L = qa. We note 
the equilibrium corresponding to a uniformly spaced row of vortices, and address the 
linearized stability problem for this configuration. Thus, we are led to (4.3). We now 
use the result that the eigenvalue problem for the coefficient matrix appearing herein 
can be solved as just indicated. The growth rates and eigen-perturbations have been 
given above. Specifically, for a system with q vortices we obtain growth rates 

The final result agrees, of course, with the final result of $2, but the modes are now 
enumerated in a systematic way according to the value of q, the number of independent 
vortices in the periodic system. 
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The fastest growing mode, p = 4/2, is realized for every strip that has an even 
number of vortices. It is first realized for q = 2, and since this problem is integrable, 
can be followed to finite amplitude. In particular, the complex ‘vector’ from vortex 1 
to vortex 2, z1 - z2, satisfies lsin {(n/L)(z, - z2)}l = const., or 

cash -((Y,--Y~) -COS -((X,-X~) = 2. {? } {? } (4.9) 

This equation for the relative position of the two vortices is considerably simpler than 
the expression given by Saffman & Baker (1979, equation (3.4)).t 

There are modes with particular symmetries for larger q that may also be followed 
to finite amplitude. These results have languished in unpublished theses by Tengara 
(1981) and Blomberg (1984). Figure 5 of Aref (1985) reproduces results of Blomberg 
(1984) that show possible trajectories of the vortices for the cases q = 2, 3 and 4. 
Particularly interesting are the separatrix motions in which the point vortices exchange 
places along the row (albeit in infinite time). Thus, using the q = 2 mode, a row of 
vortices . . . ABCDEF.. . can become . . . BADCFE.. . . This is the point-vortex 
counterpart of the ‘pairing mode’ (no merging of vortices can occur for point vortices). 
Using the q = 3 mode a row . . . ABCDEF.. . can become . . . BACEDF.. . . Finally, for 
q = 4 we can change . . . ABCDEFGH.. . into . . . CBADGFEH . . . . These results 
suggest that by exciting different modes with different periodicities one may be able to 
achieve interesting mixing patterns in a real shear layer that has rolled up into discrete 
vortices. I believe that some of these modes are intimately related to the patterns 
observed in excited shear layers by Ho and coworkers (see Ho & Huang 1982; Ho & 
Huerre 1984) more than a decade ago. For different q the modes have different ranges 
of ‘spatial reach’ along the layer. The q = 2 mode involves interactions of nearest 
neighbours. For q = 3 we have interactions of second-nearest neighbours, etc. Of 
course, finite-area vortices of the same sign will typically merge at some point during 
their mutual orbit, and this must be kept in mind when interpreting the point-vortex 
motions in the context of real flows. 

There is an important postscript to these analyses of stability of finite vortex systems. 
When we impose the various perturbations, such as (4.2) and (5.4) below, it is 
important to distinguish perturbations that leave the integrals of motion invariant (to 
linear order) from those that do not. For example, invariances of the linear impulse 
implies that a perturbation such as Q in (4.2) satisfy 

(4.10) 

(I have written the condition for the general case of different strengths.) For 
identical vortices this condition is, in fact, satisfied for the wavelike perturbations 
Q = exp {i2npa/q} so long as p =l= 0. Angular impulse is not conserved for the periodic 
strip, but conservation of kinetic energy, i.e. invariance of the Hamiltonian under 
perturbation, leads to the following result : Consider the vortex equations of motion 
written in Hamiltonian form 

(4.1 1) 

t This is corrected on p. 133 of Saffrnan (1992). J. T. Stuart has kindly pointed out that the result 
(4.9) was first obtained by Rosenhead (1931); see also Stuart (1986). 
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where for the periodic strip H is given by (3.7). Then a perturbation 85, = Sxa+iSy, 
implies the following change in the value of H: 

(4.12) 

This formula shows two things. First, if the unperturbed state is steady, x, = ya = 0, 
then there is no change in H.  Second, if the unperturbed state consists of uniform 
rotation of each vortex, such that z, = i52za, or xa = -SZy,,j, = ax,, then 

P 

SH = - SZ C C(X, SX, + y ,  Sy,) = - @SI, (4.13) 
a-1 

where I is the angular impulse of the vortex system, 

4 
z = T,(x:+y:). 

a=l 

(4.14) 

Hence, for the configurations we are considering it suffices that perturbations leave 
linear and angular impulse invariant (the latter will automatically ensure invariance of 
the Hamiltonian). If the unperturbed state is steady, one need only check invariance of 
linear impulse under perturbation. 

5. Vortex polygons 
= r and make the Ansatz 

z,(t) = Rexp[i{52t+a2x/N}],a = 1,. . . , N. The identical vortices are now situated at 
the vertices of a regular N-gon that rotates rigidly with angular frequency 52. From (1.1) 
we obtain the equation 

We return to the unbounded plane and in (1.1) set all 

The sum on the right is independent of a and equals 

The first transformation follows from elementary trigonometry, the second from (3.6), 
that we gave a physical interpretation in $3.  

We have thus established a connection between the angular frequency of rotation, 
52, and the radius of the circle through the vortices, R :  

We designate the solution to (1.1) that we have just found by z$"(t), and consider the 
perturbed solution 

(5.4) 

Substitute this into (1 .l), and linearize in the perturbations ya(t). After subtraction of 
the equation of motion for the unperturbed solution there results the following system : 

za(t) = Z?(t){l + r,(t)>. 
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The denominators in the sum on the right-hand side may be written as 

-4R’exp {i27t(a+/3)/N} sin2 {n(a-/3)/N}. 

Then (5.5) becomes 

175 

(5.6) 

The coefficient of 7, on the right-hand side contains the sum 

the imaginary part of which vanishes according to (3.6). The real part is 

The sum is independent of a, as we saw in (4.4). We note the reappearance in (5.7) of 
the matrix A, from (4.6). 

In view of (5.8), (5.9) and (5.3), (5.7) now becomes 

(5.10) 

where we know the eigenvalues and eigenvectors of the matrix on the right-hand side. 
Let us divide (5.10) through by I‘/87tR2, using (5.3) to relate this factor to G, and let 

us write 7, as a column vector q with real and imaginary parts q’ and q”, respectively. 
We also write A for the matrix A,. With these changes (5.10) becomes 

4’-if-i4(N- 1)q’ = -aq’+Aq’’ (5.11) 

(the overdot denotes a derivative with respect to time scaled by I‘/871R2). Separating 
into real and imaginary parts we obtain 

(5.12a, b) 

Thus, Q’ = Ail” = A(A -4(N- 1) I}#, (5.13) 

where 1 is the unit matrix. It is clear from this equation that the growth rates for 

tj’ = Aq”, tj” + 4(N-  1) q’ = At(. 

- 
unstable modes of the polygon are given by 

, p - g o n )  = +- a(N) ( N ) - ~ ( N -  1)}11/2, p = 0, I , .  . . , IN /~ ] ,  (5. 
P -gnR2[ P {‘P 

where the aLN) are given by (4.7), i.e. 

- 47t R2 
r 

f p - g o n )  = + - [p (N-p)  { p ( N - p )  - 2(N- 1)}]1’2, p = 0, 1 , . . . , “/2]. (5. P 

This is the result given by Havelock (1931) who used polar coordinates to perform 
the stability analysis. It was rediscovered by Dritschel (1985) who considered the 
corresponding states of finite-area vortices. Havelock’s derivation is reviewed in the 
monograph by Saffman (1992, $7.1). 

We briefly considered the allowed perturbations in the sense of the discussion at the 
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N 2(N- 1) 

2 2 
3 4 
4 6 
5 8 
6 10 
7 12 
8 14 
9 16 

P(N-P)  
1 
2 
394 
4 ,6  
5 ,8 ,9  
6, 10, 12 
7, 12, 15, 16 
8, 14, 18, 20 

TABLE 1.  Values of N, (2N- 1) and p ( N - p )  for p = 1,2,. . . , [N/2] 

end of the previous section. The eigenmodes are again waves, and all p listed are 
allowed. Considering the angular impulse, the condition for invariance of I to linear 
order in the perturbation is that the sum of the real parts of the perturbations T~ 
vanishes. The condition of invariance of linear impulse is that the sum of 
7,exp {i2na/N} vanishes. Since vd depends on a as exp {i2npa/N}, we see that linear 
impulse is always left invariant (because 7, is included as a factor of z:)(t) in equation 
(5.4)), and angular impulse is left invariant except for the p = 0 mode, which 
corresponds to a perturbation to a polygon of slightly different size. This is always a 
neutrally stable mode. Thus, all values of the growth rate listed in (5.14b) except p = 0 
are to be considered for the problem of stability of the polygon configuration when the 
values of the linear impulse, angular impulse and energy (Hamiltonian) are left 
invariant. 

Table 1 shows the values of N ,  2(N-  1) and p ( N - p )  for the appropriate range of p .  
We see that p ( N - p )  -= 2(N- 1) for all p when 2 < N < 6. Hence, the growth-rates in 
(5.14b) are pure imaginary, i.e., = iw, where w is a frequency of oscillation, and 
there is no instability. For N 2 8 at least one mode satisfiesp(N-p) > 2(N- 1) and we 
have instability. For N = 7 the modes with p = 3,4 have a zero growth-rate and are 
neutrally stable in linear theory. The transition from stable polygons to instability as 
Ncrosses 7 is known as Thornson’s theorem, since it was first enunciated in Thomson’s 
(1883) Adams Prize Essay. The proof given here and the connections revealed between 
this problem and the problem of the infinite row appear to be new. 

Lord Kelvin (Thomson 1878) noted that for N = 3 the frequency of oscillation, w ,  
coincides with the frequency of rotation of the equilateral triangle of vortices, 52. 
Indeed, this is true for the p = 1 modes for any value of N ,  i.e. (5.14b) with p = 1 
reproduces (5.3) for sl. Khazin (1976) presents an argument that the N-gon with N < 6 
is not only stable in linear theory but is Lyapunov stable as well. Mertz (1978) considers 
the effect of adding a central vortex. 
In the limit N+m, R+m, with the ratio 2 n R / N =  a held fixed, the angular 

frequency 52 + 0, and the ring tends (locally) to a row with spacing a. The growth rate 
akN-gon) tends to (2.1 1) when we remember that the mode p corresponds to a wave of 
wavelength h = 2nR/p.  

6. Collinear configurations 
We conclude our study of the single row by exploring in this section and the next a 

family of finite point-vortex equilibria in which the vortices are all on a line. If the 
vortices are identical, this line must rotate rigidly. Let us first determine the positions 
of the vortices along the line in this case. 
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We consider the Ansatz z,(t) = x,exp (iat), a = 1, . . . , N, where the xu are certain 
numbers to be determined. Substitution in (1.1) gives a system of algebraic equations, 

, a = 1 ,..., N, 
2RQ N 1  
- x u  = E'- r #=I Xa-Xp 

a nonlinear eigenvalue problem for determining both the frequency of rotation and the 
positions along the line. 

Equation (6.1) may be solved by using a 'generating polynomial' of the vortex 
configuration, 

This function has the important property that its logarithmic derivative is proportional 
to the fluid velocity at x: 

P(x) = ( x  - x,) . . . (x - XN). (6.2) 

N i  

Pyx)  = P(x) x A. 
u-1 x-xu 

Thus, 

In this sum one decomposes the summand in partial fractions. A sum such as the one 
on the right-hand side of (6.1) is then obtained. Substitution of the left-hand side of 
(6.1) and simplification of the result yields the following ODE for P(x) : 

r 
~ P " - 2 x P + 2 N P  = 0. 
2RQ 

Except for the factor multiplying P', which can be eliminated by a rescaling of the 
independent variable x, this is the differential equation of the Hermite polynomial of 
degree N. In particular, one has the result obtained by Stieltjes (see Szego 1939,§6.7) 
in a different physical context that the positions of the vortices along the rigidly 
rotating line are given by 

112 

xu = x:~)(&) , a = 1 ,..., N ,  

where the xLN) are the zeros of the Nth Hermite polynomial. 
We may notice in passing that a closely related analysis and use of the identity that 

the derivative of H N  is 2NHN-l shows that the stagnation points of the flow induced 
by this linear array of identical vortices are located at the positions of the zeros of the 
(N- 1)th Hermite polynomial (scaled again by {r/2~L?}'/~ as in (6.6)). 

An interesting by-product of this development-much as we found (3.6) in our 
earlier analysis - arises by multiplying (6.1) by xu and summing on a. The right-hand 
side can easily be shown to equal N(N-  1)/2. On the left-hand side we obtain from 
(6.6) the sum of (x:N))2. Hence, we derive a 'sum rule' for the roots of the Nth Hermite 
polynomial : 

N x (Xi"))2 = lN(N-  1). (6.7) 
a-1 

It is worth discussing a simple generalization of the above procedure for finding 
collinear equilibria. If N is odd, N = 2n + 1, x = 0 is a root, and the symmetrically 
positioned vortices rotate about a central vortex. Equilibria exist where this vortex 
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does not have the same strength as the others. For example, if its strength is p r ,  the 
nonlinear eigenvalue problem (6.1) is replaced by 

, a = l ,  ..., N-1, 
2nQ p N - l  1 
-xa = -+ C’ ~ r X a  p-1 X a - X B  

where we have numbered the vortices such that the stationary vortex at the origin is 
vortex N. Since the 2n identical vortices are symmetrically placed pairwise, the 
equation expressing the stationarity of vortex N at the origin is trivial, and (6.8) can 
be rewritten as 

We are now summing over only half the vortices, the symmetrically placed partner of 
each having been taken into account in the sum. The first term on the right is the 
contribution from the vortex at the origin, and the vortex at -xa.  We may note from 
(6.9), the counterpart of (5.3), that 

(6.10) 

Using a generating function similar to (6.2), but with a factor x p  to handle the vortex 
at the origin, Ahmed et al. (1979) have shown that if p > -+, (6.10) has a unique 
solution in which the ( 2 n Q / r )  x: are the roots of the generalized Laguerre polynomial 
Lpp-1/2). Forp = 1 we should return to the case of 2n + 1 identical vortices, and, indeed, 
Hzn+l(x) is proportional to LF/2)(x2).  Similarly, for p = 0 we should return to the case 
of 2n identical vortices, and, indeed, Hzn(x) is proportional to Li-1/2)(x2). 

For p < -+ there is a solution for N = 3 but not for larger N. (For p = -; this 
solution has Q = 0 as follows from (6.10)). This is easily seen by considering (6.9) for 
the smallest and largest values of x,  i.e. for a = 1 and a = n. Dividing these two 
equations by x ,  and xn,  respectively, and subtracting gives 

or (6.1 1 b) 
4 n-1 

In this equation, for p < -f and n 2 2,  the first and second terms are < 0, the third is 
< 0. Hence, no solution of (6.9) exists for N > 3 when p < -a. 

Of particular interest for our present discussion are the limiting forms of these results 
when N - t  co. It is well known that the zeros of the Hermite polynomials become 
uniformly spaced in this limit. For large N,  xLN) varies as a ~ / ( 2 N ) ’ / ~ .  As the 
configuration converges to one with a fixed spacing, a, between the vortices, the 
angular frequency diminishes according to Q = 7cr/4Na2 from (6.6). 

A very interesting result is obtained for the case of a vortex of strength p T  (p > - +) 
at the origin when we let N +  co. This now becomes a single row with an ‘imperfection’, 
a vortex that is either a bit stronger or weaker than the rest. The x, now tend to the 
zeros of the Bessel function of order p -+. Indeed, the zeros j p - l / 2 ,  a of Jp-l /2(x)  satisfy 
the identity (Ahmed er al. 1979) 

(6.12) 
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Thus, except for an undetermined scale factor, the positions within a steady, infinite, 
single row of point vortices with an ‘imperfection’ that is p times stronger than the 
others are given by the zeros of the Bessel function of order p - t .  For p = 0 or 1 we 
recover the single row of von Karmin and Lamb (92) as a reflection of the familiar 
results that the zeros of J*1,2 are uniformly spaced (with spacing z). 

7. Linear stability of collinear codgurations 
Remarkably, the linear stability problem for the state given by (6.6) can be carried 

out analytically for arbitrary N .  The required algebraic results are given by Bruschi 
(1979). We proceed as in our earlier analyses. Set 

(7.1) 

where the xa are determined according to (6.6). Invariance of the linear impulse now 
implies that the ga must sum to zero. Invariance of the angular impulse implies the 
orthogonality relation 

z,(t) = (x ,  + Q(tN exp (iQ0, 

N 

x p g ;  = 0 (7.2) 
a=l 

where the prime again indicates the real part. 

to 
Substitute (7.1) into (1.1) and linearize. This leads after a straightforward calculation 

Let us write Q as a column vector 4 with real and imaginary parts c’ and C;“, 
respectively. We also write A for the matrix A ,  with elements 

Using this notation (7.3) becomes 

(’ = - Q(A - 1) C”, 4” = - Q(A + 1) 6’. (7.5a, b) 

The eigenvalue problem for matrix A has been solved completely for general N 
(Bruschi 1979). The eigenvalues are N - m , m  = 1,. . . , N .  The corresponding (un- 
normalized) eigenvectors are dm) with components 

uim) = H , _ , ( X ~ ~ ) ) / H , - , ( X ~ ~ ) ) ,  a = 1,. . . , N .  (7.6) 

From (7.5) we have 
s“= a“A2-1)C;. 

In view of (7.7) the linearized eigenmodes have growth rates 

c, = Q[(N-m)2-  111/’, m = 1,. . . , N .  

(7.7) 

The modes m = N -  1 and m = N are neutrally stable. These modes correspond to 
the eigenvectors uLN-l) = xLN)/(N- l), i.e. a scaling of the configuration, and uiN’ = 1, 
i.e. a finite displacement of the entire configuration, respectively. (The result 

2(N- 1) HN&) for Hermite polynomials.) Invariance of linear and angular impulse 
under perturbation rules out these modes. The remaining modes, m = 1, . . . , N -  2, are 

yLN-l )  - - xLN)/(N- 1) follows from the recursion formula HN(x)  = 2xHN-,(x) - 
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all orthogonal to dN-l) and d N )  and therefore respect the invariance of linear and 
angular impulse (and thus of the Hamiltonian) according to (4.10H4.14) and (7.2). 
These modes are present for N 2 3 and are all unstable. The most unstable mode 
occurs for m = 1. It has growth rate v1 = Q[N(N-2)]1 /2  and the components of the 
corresponding eigen-perturbation, up) = l / H N - l ( x i N ) ) ,  a = 1,. . . , N ,  alternate in sign. 
In the limit N +  ao, we obtain g1 x QN x xr/4a2, which is just (2.1 1) with h = 2a. 

This paper is (belatedly) dedicated to Professor Nicholas Rott on the occasion of his 
75th birthday. Financial support for the completion of the manuscript from NSF grant 
CTS-9311545 is gratefully acknowledged. 
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